CLT Buildings Sound Insulation

Lin Hu, Ph.D, Senior Scientist
FPInnovations

Location: Seattle
Date: February 28, 2013

Introduction

Airborne Sound and Impact Sound

- Airborne Sound:
 Examples: - Talking
 - Music

- Impact Sound (Structure-borne Sound):
 Examples: - Foot-steps impact of walking, jumping on a floor
 - Hammer impact on a floor or a wall

Scope

- The assemblies separating adjacent spaces:
 - Common interior walls
 - Partitions
 - Floor/ceiling assemblies

Flanking Transmission

- Direct sound transmission paths:
 - Walls
 - Partitions
 - Floor/ceiling assemblies

- Flanking transmission: Not through the direct paths such as
 - Leaks
 - Junctions of wall/floor or ceiling/wall
 - More to learn
Introduction

Classify Sound Insulation of Building Assembly without Flanking

- STC (Sound Transmission Class)
 - Airborne sound insulation of walls or floor/ceiling assemblies

- IIC (Impact Insulation Class)
 - Impact sound insulation of floor/ceiling assemblies

Classify Sound Insulation of Building Assembly in Field with Flanking

- FSTC (Field Sound Transmission Class)
 - Airborne sound insulation of walls or floor/ceiling assemblies in real buildings with flanking

- FIIC (Field Impact Insulation Class)
 - Impact sound insulation of floor/ceiling assemblies in real buildings with flanking

FSTC < STC, FIIC < IIC

Introduction

Code Requirements – e.g. IBC

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>Thickness (in.)</th>
<th>Assembly type</th>
<th>STC</th>
<th>IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3-3/4 to 4-1/2</td>
<td>Wall</td>
<td>32-34</td>
<td>N.A.</td>
</tr>
<tr>
<td>5</td>
<td>5-1/3</td>
<td>Floor</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>5-3/4</td>
<td>Floor</td>
<td>39</td>
<td>24</td>
</tr>
</tbody>
</table>

Measured on field bare CLT wall and floor

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>Thickness (in.)</th>
<th>Assembly type</th>
<th>STC</th>
<th>FIIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4-1/8</td>
<td>Wall</td>
<td>28</td>
<td>N.A.</td>
</tr>
<tr>
<td>7</td>
<td>8-1/5</td>
<td>Floor</td>
<td>N.A.</td>
<td>25-30</td>
</tr>
</tbody>
</table>
CLT Wall and Floor Sound Insulation Design

Essential Knowledge – Principle for Good Sound Insulation Design

- Sufficient mass
- Soft surface of floor finishing
- Floating topping and finishing
- Suspended drywall ceiling
- Decouple
- Discontinue

Essential Knowledge – Human Perception to Sound Pressure Level Change

3dB change in sound pressure level is just perceivable

Important rule for the development of cost-effective solutions!

Design Examples for >50 STC Walls

- STC 50:
 1 and 3 = 4-1/2 in. CLT; 2 = 1-1/8 in. Mineral wool in the gap
- STC 55:
 Adding 5/8 in. gypsum board directly to both sides
- STC 60:
 with the gypsum boards and double the thickness of the gap and mineral wool

Design Examples for >50 STC and IIC Floors

<table>
<thead>
<tr>
<th>End view of cross-section</th>
<th>Floor detail</th>
<th>STC</th>
<th>IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 5-layer CLT panel of 5-3/4”</td>
<td>64</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>2. Sound isolation clips of 4” high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Metal hat channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sound absorption material (such as glass fibre) of 4”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Gypsum board of 1/2”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gypsum board of 1/2”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increase the thickness of the gypsum board to 5/8”

63 | 62
Design Examples for >45 FSTC Walls

<table>
<thead>
<tr>
<th>Top view of cross-section</th>
<th>Wall detail</th>
<th>FSTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 & 5 = 5/8” Gypsum board 2 & 4 = Resilient channels at 24” o.c. 3. 5-layer CLT of 7-1/4”</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1 & 7 = 5/8” Gypsum board 2 & 6 = Resilient channels at 24” o.c. 3 & 5 = 3-layer CLT of 3.07” 4 = 1” air gap filled with mineral wool</td>
<td>47</td>
</tr>
</tbody>
</table>

Design Examples for >45 FSTC and FIIC Floors

<table>
<thead>
<tr>
<th>End view of cross-section</th>
<th>Floor detail</th>
<th>FSTC</th>
<th>FIIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 = Carpet, or floating flooring about 2/5” on 1/8” resilient underlayment of 0.16 to 0.37 lb./ft.2 2 = At least 5.12 lb./ft.2 dry topping, e.g. 0.8-1” gypsum board, cement fibreboard 3 = Resilient underlayment, e.g. 2/5” rubber mat of 0.84 lb./ft.2, 1/6” texture felt of 0.27 lb./ft.2, 1/2” low density wood fibreboard of 0.73 lb./ft.2 4 = 5-layer CLT of 6-7/8”</td>
<td>~45</td>
<td>~45</td>
</tr>
<tr>
<td></td>
<td>Replace the dry topping by wet topping, e.g. 1 5/8” concrete of at least 15.6 lb./ft.2</td>
<td>~50</td>
<td>~50</td>
</tr>
</tbody>
</table>

- Replace 1) by hardwood flooring nailed to 3/4” plywood
- Replace 2) by thick resilient underlayment, e.g. 2/5” rubber mat of 0.84 lb./ft.2, 1/6” texture felt of 0.27 lb./ft.2, 1/2” low density wood fibreboard of 0.73 lb./ft.2
- Replace 1) by ceramic tile glued to 1/2” and 1/4” plywood
- Replace 2) by thick resilient underlayment, e.g. 2/5” rubber mat of 0.84 lb./ft.2, 1/6” texture felt of 0.27 lb./ft.2, 1/2” low density wood fibreboard of 0.73 lb./ft.2
Best Practice

Minimizing Flanking – Pay Attention to Details otherwise the Sound Insulation Performance of the Design Examples Will No Be Achieved!

- Seal the leakages and gaps
- Decouple
- Discontinue

Best Practice

For Occupants’ Satisfaction

- FSTC >50
- FIIC >50

Best Practice

Conduct Field Inspection on Completed Building

- Measure the FSTC and FIIC
- Conduct your own subjective evaluation of the sound insulation performance if you are the builder, or the design engineer, or the architect

Conclusion

With proper design and installation, CLT buildings can achieve satisfactory sound insulation and be cost-effective
Recommendation

Journey began,
Continue the journey with us

Questions & Answers

Thank you!

Contact

FPInnovations
Lin Hu, Ph.D.
Senior Scientist

319, rue Franquet
Quebec, QC
G1P 4R4

Phone: 418 781-6703
Email: lin.hu@fpinnovations.ca

www.fpinnovations.ca