Wood Construction

CLT’s role in North-American Construction

Erol Karacabeyli

Location: CLT Symposium Seattle
Date: February 28, 2013

FPInnovations Survey on Brick & Beam Buildings

- Up to **9 storeys**, high ceiling (up to 12’ high), **exposed heavy timber**
- Built from 1859 to 1933
- Factories, warehouses and manufacturing
- All across Canada...
 - Toronto - 125 buildings retail & office use (up to 220,000 sf floor space – i.e., 6 storeys @ 37,000 sf)
 - Vancouver – 47 buildings (min) retail, office, restaurant, hotel & apartment
 - Montreal – retail, residential & office use

Treasured

Durable

Flexible

- Taller and larger than allowed by current building codes

FPInnovations Survey on Brick & Beam Buildings

- Toronto Carpet Factory, largest brick & beam buildings in Canada, 6-storey with ceiling up to 22’. Built around 1900
Wood Building Systems

- Light Frame
- Post & Beam
- CLT
- Hybrid

Paradigm shift in introducing innovative wood building systems

CLT is A great addition to ‘Wood’s Toolbox’

CSN-FONDATION Building, Quebec City
Murray Grove Building, London, UK

U.S. CLT Handbook

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to cross-laminated timber</td>
</tr>
<tr>
<td>2</td>
<td>Cross-laminated timber manufacturing</td>
</tr>
<tr>
<td>3</td>
<td>Structural design of cross-laminated timber elements</td>
</tr>
<tr>
<td>4</td>
<td>Load design of cross-laminated timber buildings</td>
</tr>
<tr>
<td>5</td>
<td>Connections in cross-laminated timber buildings</td>
</tr>
<tr>
<td>6</td>
<td>Durability of load and creep factors for cross-laminated timber panels</td>
</tr>
<tr>
<td>7</td>
<td>Vibration performance of cross-laminated timber floors</td>
</tr>
<tr>
<td>8</td>
<td>Fire performance of cross-laminated timber assemblies</td>
</tr>
<tr>
<td>9</td>
<td>Sound insulation of cross-laminated timber assemblies</td>
</tr>
<tr>
<td>10</td>
<td>Building enclosure design for cross-laminated timber construction</td>
</tr>
<tr>
<td>11</td>
<td>Environmental performance of cross-laminated timber</td>
</tr>
<tr>
<td>12</td>
<td>Lifting and handling of cross-laminated timber elements</td>
</tr>
</tbody>
</table>
U.S. CLT Handbook

Funding
Binational Softwood Lumber Council
Forestry Innovation Investment of BC
Structurlam Products
Nordic Engineered Wood
CLT America

Authors and Reviewers

55 North American and International experts

Conceptually, how high can we go with wood?

16-Storey in Italy
20-Storey Austria
UBC-RJC 20-Storey
20-Storey Norway

U.S. CLT Handbook

Working Group
Brad Douglas (AWC)
Erol Karacabeyli (FPInnovations)
Dave Kretschmann (USDA FPL)
Lisa Podesto (U.S. WoodWorks)
BJ Yeh (APA)

Editors
Erol Karacabeyli (FPInnovations)
Brad Douglas (AWC)

Project Managers
Sylvain Gagnon (FPInnovations)
Loren Ross (AWC)
As high as trees

Green-Karsh 30 Storey

Timber Tower Germany 328 ft

Redwood 379 ft

A Renaissance in wood construction

Q & A