The First Multi-family Passive House Building in New England:

Not a Passive Endeavor

Presented by: Michelle Apigian AIA, LEED AP, AICP, CPHC

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.
For this case study presentation, The Distillery's 28-unit Phase 1 building—a six-story, wood-frame over podium Passive House project under construction in South Boston—will be used to highlight design and construction principles that can radically reduce energy consumption. Applicable to nearly all building types, the discussion will highlight how this low-load building approach can be applied both to new construction as well as retrofit. Emphasis will be placed on the deepening knowledge and evolving strategies that helped produce a highly-efficient, cost-effective building that will be affordable to operate, comfortable and healthy to be in and highly resilient. Details, testing data and lessons learned will be shared, with a special focus on the thermal envelope, continuous air barrier implementation and efficient ventilation systems. Wood’s use as structural material will be discussed, as will its role in providing a cost-effective building approach that allowed this project to come to fruition and afforded further sustainability features to be implemented.
Learning Objectives

2. Highlight the construction details used to provide significant energy reduction.

3. Discuss the role that wood framing played in reducing construction costs on New England’s first multi-family Passive House project.

4. Explore lessons learned from the design and construction process of The Distillery project.
Agenda/Outline

• What is Passive House
 Goals
 History
 Examples
• How
 Super-Insulated
 Air Tight
 Continuously Ventilated
• Case Study: Distillery
 Evolution
 Details
PASSIVE HOUSE:
THE WORLD’S MOST ENERGY EFFICIENT PERFORMANCE STANDARD

Goal: lower consumption
 Radically reduce energy demand

Requirements: measurable criteria
 Meet a specifically low energy budget
WHAT IT IS NOT

HOLISTIC SUSTAINABLE DESIGN:
LEED, Living Building Challenge

- Site: 18%
- Materials: 13%
- Water: 12%
- Energy: 32%
- IEQ: 17%
- Location: 8%
WHAT IT IS

A SIGNIFICANT PIECE OF THE PUZZLE

49%

Energy
- 32%
 - Insulation
 - Air Infiltration
 - Windows
 - Heating/Cooling
 - Hot Water
 - Lighting
 - Appliances

IEQ
- 17%
 - Ventilation
 - Moisture Control
 - Heating/Cooling Distribution
 - Air Filtering
WHAT IT IS NOT

NET ZERO: Balancing load with Renewable Energy

Energy Consumption
- Heating
- Cooling
- Ventilation
- Hot Water
- Lighting
- Appliances
- Plug Loads

Energy Generation
- Photovoltaic
- Wind
- Solar Thermal
- Geothermal
WHAT IT IS
FOUNDATION FOR NET ZERO:

#1 Minimize Load with Passive House

#2 Produce with Renewable Energy
WHAT IT IS:

FOUNDATION FOR NET POSITIVE:

CONSUMPTION

GENERATION
WHAT IT IS RADICALLY LOW ENERGY
WHAT IT IS

THE HIGHEST ENERGY STANDARD
HISTORY

Passive House Institute, US (PHIUS) founded in 2006
HISTORY

70’S INCEPTION IN NORTH AMERICA
HISTORY

70’s & 80’S PRECEDENTS IN NORTH AMERICA

Saskatchewan Conservation House
85% reduction in energy use

Critical Concepts – New terminology:
- Superinsulation
- Air-tight construction
- Blower Door Test
- Thermal Bridging
- Low E glazing
- Triple Glazed Windows
- Heat Recovery Ventilators
Passive House Institute Founded in Germany in 1996

- Over 30,000 estimated worldwide
HISTORY

2000’S Back to the US

Passive House Institute US (PHIUS) Founded in 2006
EXAMPLES International Commercial
EXAMPLES International School/University
EXAMPLES International Multifamily/Hotel
EXAMPLES International Retrofit
EXAMPLES US Multifamily
EXAMPLES

US Commercial/Educational
The Standard: Measurable Criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Boston</th>
<th>Other Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Space Heating Energy Demand</td>
<td>4.75 kBTU/ft²/yr</td>
<td>5.3 kBTU/ft²/yr</td>
</tr>
<tr>
<td>Annual Space Cooling Energy Demand</td>
<td>4.75 kBTU/ft²/yr</td>
<td>2.9 kBTU/ft²/yr</td>
</tr>
<tr>
<td>Peak Heat Load</td>
<td>4.4 BTU/ft²/hr</td>
<td>4.2 BTU/ft²/hr</td>
</tr>
<tr>
<td>Peak Cooling Load</td>
<td></td>
<td>0.05 cfm/GSF @ 50 pa</td>
</tr>
<tr>
<td>Airtightness</td>
<td>0.6 ACH</td>
<td>0.08 cfm/GSF @ 75 pa</td>
</tr>
<tr>
<td>Primary Energy Demand Commercial</td>
<td>38 kBTU/ft²/yr</td>
<td>38 kBTU/ft²/yr</td>
</tr>
<tr>
<td>Primary Energy Demand Residential</td>
<td>38 kBTU/ft²/yr</td>
<td>6200 kWh/person</td>
</tr>
</tbody>
</table>

Climate specific: Boston
<table>
<thead>
<tr>
<th>Annual Space Heating/Cooling Demand</th>
<th>= Miles Per Gallon for the Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airtightness</td>
<td>= Durability</td>
</tr>
<tr>
<td>Primary Energy Demand</td>
<td>= Carbon Footprint</td>
</tr>
</tbody>
</table>
Carbon Footprint Source of Energy/Conversion Losses

ELECTRICITY

100 MMBTU source energy

- Extraction, processing and transportation losses: 88
- Conversion losses: 29
- Distribution losses: 27
- Delivered to customer

NATURAL GAS

100 MMBTU source energy

- Extraction, processing and transportation losses: 92
- Distribution losses: 90
- Delivered to customer

Thanks to lower conversion losses, three times more energy reaches the customer with natural gas than with electricity.
THE STANDARD How does this Compare?

4.75 kBTU/ftsq/yr Annual Space Heating Energy Demand 5.3 kBTU/ftsq/yr
4.75 kBTU/ftsq/yr Annual Space Cooling Energy Demand 2.9 kBTU/ftsq/yr

*climate specific: Boston

Office: 33 kBTU/ftsq/yr
K-12: 29 kBTU/ftsq/yr
Res: 24 kBTU/ftsq/yr

2-3 TIMES
THE STANDARD How does this Compare?

Mass Maritime LEED Platinum
10.2 kBTU/ft²/yr
2 TIMES
THE STANDARD How does this Compare?

Airtightness

.6 ACH

0.05 cfm/GSF @ 50 pa
0.08 cfm/GSF @ 75 pa

2009 IECC <7 ACH50
2012 IECC <.4 CFM/ftsq
Roughly equiv to <3 ACH50

3 TIMES
How does this Compare?

Highland Terrace
LEED Platinum
2.36 ACH50

4 TIMES
THE STANDARD How does this Compare?

Highland Terrace 50-54
THE STANDARD How does this Compare?

38 kBTU/ftsq/yr Primary Energy Demand Commercial 38 kBTU/ftsq/yr
38 kBTU/ftsq/yr Primary Energy Demand Residential 6200 kWh/person

Office: 148 kBTU/ftsq/yr
K-12: 141 kBTU/ftsq/yr
Res: 68 kBTU/ftsq/yr

2-3 TIMES
THE STANDARD How does this Compare?

Figure 2: Source Energy Use Intensity (EUI) Comparison

Source: New York City Local Law 84 Benchmarking Report, 2013
THE STANDARD How does this Compare?

Energy Footprint

Code

Passive House

- 90% less heating energy
- 66% less total energy
HOW DO YOU GET THERE?
Heating and Cooling makes up nearly 50% energy demand.
HOW DO YOU GET THERE? Drive Down Loads

- Thermal Control
- Air Tightness
- Mechanical Systems
- Lighting/Appliances/Plug Loads
HOW DO YOU GET THERE? Drive Down Loads

Thermal Control

• Geometry (Lower surface to Volume Ratio)
• Orientation (Optimize Solar Heat Gain/Shading)
• R-Value (Slab, Roof, Walls & Windows)
• Minimize Thermal Bridging

= HUMAN COMFORT
HOW DO YOU GET THERE? Drive Down Loads

Thermal Control

• Geometry (Lower surface to Volume Ratio)
• Orientation (Optimize Solar Heat Gain/Shading)
• R-Value (Slab, Roof, Walls & Windows)
• Minimize Thermal Bridging

= HUMAN COMFORT
HOW DO YOU GET THERE? Drive Down Loads

Thermal Control

Brooklyn Hts Passive House
Taken on a Freezing night, Winter 2012
Air Tightness

• Continuous Air Tight Layer
• Minimize and Seal all Penetrations
• Detail Transitions
• Consider Construction sequence

= DURABILITY
Air Tightness

Infiltration Leads to
• Heat Loss
• Moisture Migration
HOW DO YOU GET THERE? Drive Down Loads

Air Tightness

Determine the boundary of the PH envelope
HOW DO YOU GET THERE? Drive Down Loads

Air Tightness

The Devil is in the Details

Optimize penetrations OR combine: example - all plumbing fixtures to one vent or the use of AAV's
HOW DO YOU GET THERE? Drive Down Loads

Air Tightness

Test For Continuity
HOW DO YOU GET THERE? Drive Down Loads

- Thermal Control
- Air Tightness

SUPER INSULATED + AIR TIGHT =
HOW DO YOU GET THERE? Drive Down Loads

Mechanical Systems

- Balanced Ventilation (ERV/HRV)
- Heating/Cooling (Point source vs Distributed)
- Hot Water
HOW DO YOU GET THERE? Drive Down Loads

Mechanical Systems

Benefits of the HRV/ERV
- Controlled Ventilation
- Transfers Heat
 - Reduces Heating need in winter
 - Reduces Cooling need in summer
- Reduces Condensation/Mold
HOW DO YOU GET THERE? Drive Down Loads

Mechanical Systems

Infiltration vs. Ventilation
HOW DO YOU GET THERE? Drive Down Loads

Lighting/Appliances/Plug Loads

- Efficiency
- Life Cycle
- Smart Controls
- Renewables – Plan for them, but don’t count on them
BENEFITS

• Reduced Carbon Footprint: Radically low energy
• Comfortable: No drafts or temperature swings
• Healthy: High Quality, Continuously filtered Air
• Resilient: Extreme Thermal Stability
• Affordable to Operate: Low Utility Bills for life
The Distillery
South Boston, MA
• Mixed Use
• 28 Units
Passive House in Practice New Construction

The Distillery
South Boston, MA
• Mixed Use
• 28 Units
Passive House in Practice New Construction

4 Stories Wood over Podium
• Cost Effective
• Efficient – Panelized
• Flexible
Passive House in Practice New Construction
Passive House in Practice New Construction

Thermal Control

SLAB: (R-23)
6” EPS above deck
Passive House in Practice New Construction

Thermal Control

WALL: (R-54)
3” cont. mineral wool
2X8 wood studs filled w/ cellulose
Passive House in Practice New Construction

Thermal Control

ROOF: (R-64)
Truss cavity filled with batt insulation
Passive House in Practice New Construction

Thermal Control

WINDOWS: U-0.134
Passive House in Practice

New Construction

Thermal Control

- **Cool Roof**
 - Reduces the heat island effect.
 - A high albedo coating provides reflectivity to reduce the heat island effect. Planted containers absorb heat and capture rainwater reducing storm water runoff.

- **High Summer Sun**
 - Blocked from entering.

- **Low Summer Sun**
 - Enters to warm space.

- **Sliding Sunscreen Louvers**
 - Providing flexible sun control to limit heat gain during the summer while allowing passive solar gain in the winter.
Air Tightness
Passive House in Practice New Construction

Air Tightness

WALLS
Passive House in Practice New Construction

Air Tightness

ROOF
Passive House in Practice New Construction

Air Tightness WINDOWS
Passive House in Practice
New Construction

Air Tightness

TRANSITIONS
Passive House in Practice New Construction

Air Tightness

TRANSITIONS
Passive House in Practice New Construction

Air Tightness

TRANSITIONS
Passive House in Practice - New Construction

Air Tightness

TRANSITIONS
Passive House in Practice New Construction

Air Tightness TESTING
Passive House in Practice

New Construction

SYSTEMS

Ventilation
Energy Recovery Ventilator - Zehnder
Passive House in Practice New Construction

SYSTEMS

Heating/Cooling
Heat Pumps - Mitsubishi
Passive House in Practice New Construction

SYSTEMS

Individual
BENEFITS

- Reduced Carbon Footprint: Radically low energy
- Comfortable: No drafts or temperature swings
- Healthy: High Quality, Continuously filtered Air
- Resilient: Extreme Thermal Stability
- Affordable to Operate: Low Utility Bills for life
BUILDING INHERENT VALUE

Re-Prioritize Costs

More $ - Envelope
Less $ - Mechanical Systems/ductwork
Always Saving - Low Operational Costs for the life of the Building
The Distillery

New Construction
This concludes The American Institute of Architects Continuing Education Systems Course

Michelle Apigian
ICON Architecture, inc.
mapigian@iconarch.com