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Acoustics & Sound Control

Code requirements only address residential occupancies:

For unit to unit or unit to public or service areas: IBC

Min. STC of 50 (45 if field tested): NTERNATIONAL
« Walls, Partitions, and Floor/Ceiling Assemblies

Min. lIC of 50 (45 if field tested) for:
* Floor/Ceiling Assemblies
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Acoustics & Sound Control

TABLE 1:
Examples of Acoustically-Tested Mass Timber Panels

Mass Timber Panel Thickness STC Rating IIC Rating
3-ply CLT wall* 3.07" 33 N/A
5-ply CLT wall* 6.875" 38 N/A
Beply CIT floaeS 5 1875" 29 22
5-ply CLT floor* 6.875" 41 25
7-ply CLT floor* 9.65" 44 30

3-1/2" bare NLT 24 bare NLT
6
Il 4-1/4" with 3/4" plywood 29 with 3/4" plywood N/A
5-1/2" bare NLT 22 bare NLT
6
XNl wall 6-1/4" with 3/4" plywood 31 with 3/4" plywood L
2x6 NLT floor + 1/2" plywood? 6" with 1/2" plywood 34 33

Source: Inventory of Acoustically-Tested Mass Timber Assemblies, WoodWorks”



Acoustics & Sound Control

Concrete Slab: CLT Slab:

6" Thick 6-7/8" Thick



Acoustics & Sound Control

Common mass timber floor
assembly:

* Finish floor (if applicable)
* Underlayment (if finish floor)

 1.5"to 4" thick
concrete/gypcrete topping

* Acoustical mat
« WSP (if applicable)
* Mass timber floor panels

Credit: AcoustiTECH



Acoustics & Sound Control

Inventory of Tested Assemblies

Table 1: CLT Floor Assemblies with Concrete/Gypsum Topping, Ceiling Side Exposed

CLT 3-ply
(4.125")

Pliteq GenieMat™ FF25

LVT on GenieMat RSTOS

Eng Wood on GenieMat
RSTOS

Carpet Tile

Kinetics® RIM-33L-2-24 System with %" Plywood

None

LVT

2 layers of 4" USG
Fiberock® on Kinetics®
Soundmatt

LVT on 2 layers of %"
USG Fiberock® on
Kinetics® Soundmatt




Floor Vibration Design

“One might almost say that strength is
essential and otherwise unimportant”

- Hardy Cross



mmmm US Building Code Requirements for Vibration m—

None

Barely discussed in IBC, NDS, etc.

ASCE 7 Commentary Appendix C has some discussion, no
requirements



mmmm Common Vibration Sources for Buildings m—

Vibration sources are complex:

* Footfall, running, aerobics, etc.

* Machinery and equipment

* Vehicular traffic, rail traffic, forklifts

e Ground-borne, structure-borne, air-borne

* Steady-state, episodic, periodic

* Harmonic, pulse, random

* Moving, stationary



mmmm Floor Vibration Criteria — Human T
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s Framing Materials Properties for Vibration m—

Material
Floor Weight Stiffness Material Mass Example Floor

Material Damping

(psf) (108 psi) (pcf) System

Concrete 100-150

1-5% 120-150 2-way slab on

columns
Steel 50-100 0.5-5% 30 490 Concrete on
metal deck on
purlins and
girders
Mass Timber 15-65 1-5% 1.2-1.8 30-40 Beam or wall

supported
Wood Frame 10-40 2-12% 1.2-2.0 30-40 Wall supported
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= VVibration Design Methods
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s CLT Handbook Method ﬁAz jA}

Limit CLT Floor Span such that

0.293 Based on:
Ly < 1 (Eieff(?lzz - Un-topped CLT
12.05 (pA)° - Single, Simple span

- Bearing wall supports.

Does not account for:

i - Supporting beam flexibility

- Multi-span conditions

- Additional floor mass (topping slab, etc)

Reference: US CLT Handbook, Chapter 7



mmmm CLT Handbook In Practice AAT\

* Experience shown it consistently produces well performing floors

e Does not consider

° Multi-span panels Improves Performance
* Flexibility of supports, e.g. beams Lowers Performance
* Impact of topping slabs berformance??

(more mass, but lower frequency)

* Recommend 20% increase in acceptable span length OK for multi-
span panels with non-structural elements that are considered to

provide an enhanced stiffening effect, including partition walls,
finishes and ceilings, etc.



mmmm CLT Handbook Base Span Limit me———
For PRG 320-2019 Basic CLT Grades and Layups from Solid Sawn Lumber

Grade Layup Thickness Base Span Limit Grade Layup Thickness [FPI Span Limit
3ply 41/8” 13.1 3ply 4 1/8” 12.6
E1 5ply 67/8” 18.2 V1 5ply 67/8” 17.6
7ply 9 5/8” 22.7 7ply 9 5/8” 22.0
3ply 4 1/8” 12.4 3ply 41/8” 12.6
E2 5ply 67/8” 17.2 V1(N) 5ply 67/8” 17.6
7ply 9 5/8” 21.6 7ply 9 5/8” 22.0
3ply 41/8” 12.0 3ply 4 1/8” 12.4
E3 Sply 67/8” 16.7 V2 5ply 6 7/8” 17.2
7ply 9 5/8” 20.9 7ply 9 5/8” 21.5
3ply 41/8” 12.7 3ply 4 1/8” 12.0
E4 Sply 6 7/8" 17.6 V3 Sply 6 7/8” 16.7
7ply 9 5/8” 22.1 7ply 9 5/8” 20.9
3ply 41/8” 12.6 3ply 41/8” 11.7
ES Sply 67/8” 17.5 V4 Sply 6 7/8 16.3
7ply 9 5/8” 21.9 7ply 9 5/8” 20.4
3ply 41/8” 12.1
V5 Sply 67/8” 16.8
7ply 9 5/8” 21.0

Reference: US Mass Timber Floor Vibration Design Guide, assuming 12% M.C.



mmmm CLT Handbook Base Span Limit me———
For PRG 320-2019 Basic CLT Grades and Layups from Solid Sawn Lumber

Approximate Base Span Limits: Limitations:
41/.” 3-ply: ~12to 13 ft - Does not account for strength or deflections
67/s" 5-ply: ~16to 18 ft - Does not account for beam flexibility
95/.” 7-ply: ~20 to 22 ft - Does not account for project specifics

Reference: US Mass Timber Floor Vibration Design Guide, assuming 12% M.C.



= VVibration Design Methods
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mmmm Resonant vs Impulsive Response m—

: L i i il
Time / i
Excitation creates Resonant build-up of vibration Response decays out between load impulses
Resonant Response Impulsive/Transient Response

For walking excitations

f ~< 8-10 Hz f,~>8-10 Hz



mmmm Beam vs Wall Supported Floors

Graphic from ASPECT

Graphic from StructureCraft

Mass Timber Panels on Grid of Beams.
Frequency of Floor < Frequency of Panel
Vibration of Floor > Vibration of Panel
Vibration Design Depends on Beams

Mass Timber Panels on Bearing Walls

Low Frequency Floor? High Frequency Floor?

Maybe At all but long floor spans



s \/alking Frequency fW I

A

Walking Speed | Walking Frequency |Steps Per Minute
Very Slow 1.25 Hz /5 SPM

Slow 1.6 Hz 95 SPM
Moderate 1.85 Hz 110 SPM

Fast 2.1 Hz 126 SPM
Running Up to 4.0 Hz 240 SPM

Practical Tip - walk to a metronome too understand the range

The range of walking frequencies considered is
an important consideration of vibration analysis
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Resonance occurs when
walking frequency = natural frequency

f=1,

Also occurs when a harmonic of the walking
frequency ~= natural frequency

nf,=f,

For ‘n’ up to around 4

Walking at f,, =2 Hz creates resonance in
floor with natural frequency, f,, at

2 HZ, 4 Hz 6 Hz, and 8Hz



mmmm Example Acceleration Performance Targets
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Range of Acceptable
Perception of Acceleration

0.5% to 5% g (vertical)

European Methods (CCIP) use “R”
values:
R = predicted value/baseline value



= US MTFVDG Suggested Performance Targets ﬁ

Peak Acceleration RMS Velocity Target
Target

Offlces, resndences 0.5%¢g 16,000 — 32,000 mips

Premium offices or luxury residences 0.3%¢g 8,000 — 16,000 mips

There are many assumptions and judgements which
go into predicting the response.
This is not an exact compliance check.



s U.S. Mass Timber Floor Vibration Design Guide

| Worked office, lab and
U.S. Mass Timber residential Examples

Floor Vibration Covers simple and complex methods

DESIGN GUIDE for bearing wall and frame supported
floor systems

Available for free from
www.woodworks.org/resources/us-mass-
timber-floor-vibration-design-guide/




s Details of U.S. Mass Timber Floor Vibration Design Guide ms

Vibration Design Examples

Residential Bearing Wall Open Office with NLT on

High Performance Lab Space
with CLT on Glulam Frame

Building with CLT Glulam Erame

SB



MEPF Integration
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MEP Layout & Integration

T i i Exposed MEP
MEP items often left exposed on the ceiling
side of floor assembly

- x
oto credit: x& |



MEP Layout & Integration

Set Realistic Owner Expectations About Aesthetics
 MEP fully exposed with MT structure, or limited exposure?
* Also consider acoustic impacts of MEPF routing







Embracing BIM for Fabrication

Photos: Swinerton



MEP Layout & Integration

Key considerations:

 Level of exposure desired

* Floor to floor, structure depth & desired head
height

e Building occupancy and configuration (i.e.
central core vs. double loaded corridor)

 Grid layout and beam orientations

* Need for future tenant reconfiguration

* Impact on fire & structural design: concealed
spaces, penetrations




MEP Layout & Integration

Smaller grid bays at central core (more head height)
 Main MEP trunk lines around core, smaller branches in exterior bays

Credit: Blaine Brownell Credit: WoodWorks




MEP Layout & Integration

Smaller grid bays at central core

Main MEP trunk lines around core

Smaller branches in exterior bays
Credit: ARUP



MEP Layout & Integration

Grid impact: Relies on one-
way beam layout.
Columns/beams spaced at
panel span limits in one
direction.

MT Panel'Span

Beam penetrations are
minimized/eliminated

Recall typical panel span

limits: = e
Panel Example Floor Span Ranges

3-ply CLT (4-1/8" thick) Upto 12 ft
S-ply CLT (6-7/8" thick) 14to17 ft
7-ply CLT (9-5/8") 17to 21 ft
2x4 NLT Upto 12 ft
2x6 NLT 10to 17 ft
2x8 NLT 14to21ft

5" MPP 10to 15 ft | Credit: Hacker Architects




MEP Layout & Integration

Dropped below MT framing

e Can simplify coordination (fewer penetrations)
 Bigger impact on head height

Credit: Alex Schreyer e , \ redit:Wd)d Qs



MEP Layout & Integration

Grid impact: Usually more efficient when using a square-ish grid with
beams in two directions

Credit: SOM Timber Tower Report



MEP Layout & Integration

In penetrations through MT framing
 Requires more coordination (penetrations)

 Bigger impact on structural capacity of penetrated members
* Minimal impact on head height

— ,: . — —
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MEP Layout & Integration

In chases above beams and below panels
* Fewer penetrations

* Bigger impact on head height (overall structure depth is greater)
* FRR impacts: top of beam exposure

Credit: KL&A Engineers & Builders



MEP Layout & Integration

In chases above beams and below panels at Catalyst
 30x30 grid, 5-ply CLT ribbed beam system

‘Credit: Hans-Erik Blomgren




MEP Layout & Integration

In gaps between MT panels
 Fewer penetrations, can allow for easier modifications later

Credit: Ema Peter/MGA




MEP Layout & Integration

In gaps between MT panels
* FRR impacts: generally topping slab relied on for FRR
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MEP Layout & Integration e oo Rt

In gaps between MT panels H= = ) —

e Greater flexibility in MEP layout P EEPAN T
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MEP Layout & Integration

In gaps between MT panels

* Aesthetics: often uses ceiling panels to cover gaps
e Acoustic impacts: rely more on topping

- f'.l"l} |
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MEP Layout & Integration

In raised access floor (RAF) above MT
e Aesthetics (minimal exposed MEP)
e Acoustic impacts (usually thinner topping req'd)
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MEP Layout & Integration

In raised access floor (RAF) above MT
 |Impact on head height
 Concealed space code provisions

Credit: Global IFS



MEP Layout & Integration

In topping slab above MT
 Greater need for coordination prior to slab pour

Limitations on what can be placed (thickness of topping slab)

 No opportunity for renovations later
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\ ﬂ MEP Layout & Integration
| Embedded conduit in Wall Iaaﬁels

PHOTO CREDIT:
CHARLES JUDD



Accommodating Vertical Movement

Beyond structural connections, consider movement
impacts on MEPF services. Flex/compression connections




MEP Systems, Routing, Integration

Integrated Mechanical Systems Design,
Coordinated with the Timber Structure

AILLED Lighting to Impeove Lighting

Pre-Fabricated Fanelized Envelope
Assembly for High-Quality Construction
and Thermal Parformance

Exposed Timber as & Matersal in the

Low-Flush and Low-Flow Water
Fixtures to Conderve Potable Water

Energy Efficiency and Provide
Opportunity for Circadian Lighting

Living Space Supports a Blophikic
Design Approach, Acts as Thermal Mass
Can Regulate Air Moisture Content

and influence Thermal Sensation

Pre-fabricated Bathroom Modules
for Efficient Construction and
Installation

INTEGRATED SYSTEMS

Credit: John Klein, Generate Architecture

Acoustic Mitigation Incotporated
into Floor Assembhios

Optimized Window-Wall Ratio
10 Provide Daylight and Views
Without Compromising Thermal
Comfort and Energy Costs

PTAC Air Conantioning Units Provide

Room-Lovel Control and Comfort

onstruc

The Talinouse bullding system prioritizes the integration of design, engneernng, and
O meet energy, comiort. acoustic. and design criteria that has been velted by constructatility experts to ensure fast

Utiizing Pre-Fabricated Facade Panels and Bathroom Modules that sre manufactured off-site in factories allows for

higher quality control practices. and safer labor conditions for Construction wo
embodied <ard AoWing more exposed timber all while providing the air quality needed for healthy living. Water
water use as a procious resource, while maintaining relable performance

s Efficient routing of duct-work ¢

ton. This results in a high performance building finely tuned

etficient production

regucing construction time on-site
onserves material, and associated
conserving fixtures reduce potable



» One of the first to utilize new IV-B construction type.

» Worked with the city to expose 50% of MT ceilings.

Photos: Nick Johnson, Tour D Space



Timber Lofts

Milwaukee, WI

68,400 sf, 4 stories
Type IlI-B
Multi-Family
Completed 2020

[W]|N]

PROFILE

BUSINESS
CASE
STUDY

WOOD DESIGN
AWARD
WINNER



Embodied Carbon and LCA




The Built Environment & Carbon Dioxide Emissions

TOTAL ANNUAL GLOBAL CO,EMISSIONS . .
Direct & Indirect Energy & Process Emissions (36.3 GT) BU | It environ ment generate
about 42% of annual

AN
carbon dioxide emissions
— . . * Building Operations
& 27.3% . » Embodied Carbon
BUILT
ENVIRONMENT
- ___ . (%%Z% Embodied carbon: 15%
g " * Cement
* lron
° o Steel
-  Aluminum

© Architecture 2030. All Rights Reserved.
Analysis & Aggregation by Architecture 2030 using data sources from IEA & Statista.



Measuring Greenhouse Gases (GHG)

Global Warming Potential (GWP)

+ Allows comparisons of global warming impacts of different gases

 Measures energy emissions 1 ton of gas absorbs over a given period of time
relative to emissions of 1 ton of carbon dioxide (CO,)

* Time period usually 100 years (EPA)

Carbon Dioxide (CO,) 1

Methane (CH,) 28-36

Nitrous Oxide (N,0O) 265-298

Fluorinated Gases Thousands to Tens of Thousands

Carbon Dioxide Equivalents (CO,,)
 International standard to express greenhouse gases in terms of CO, equivalents



Traditional Non-Wood Building
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Embodied Carbon

term target for climate change mitigation

GHG
Emissions

Time

Embodied

D

Embodied

5 S 63y €D
m e & TR

Embodied

Embeodied

Primarily related to manufacturing of materials

Embodied

Embodied

Operating

P
]

Extract
raw
materials

Transport Manufacture Transport Construct
to factory  products to site the
building

More significant than many people realize, has been historically overlooked

Big upfront Greenhouse Gas (GHG) “cost” - which makes it a good near-

Embodied

& D G

Embodied Embodied

i ey Suy

Use and
maintain
the
building

Demolish  Haul away Landfill
the waste (or recycle)
building materials

Image: ThinkWood



Carbon Storage
Wood = 50% Carbon (dry weight)




U.S. Forest Land:
Forest Area in the United States 1630 — 2017
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Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)



State of our Forests: US Timber Volume on Timberland
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Source: USDA-Forest Service, Forest Resources of the United States, 2017 (2018)



Carbon Benefits of Wood

 Lower embodied carbon
compared to other common
building materials

e Less fossil fuel consumed
during manufacture

* Avoid process emissions

« Extended carbon storage in
products

« Carbon sequestration in
forests

* Promotes forest health

USDA
s Unitod States Dopartmert of Agriculture
The closed loop of Carbon Fossil fuel useis an
FOREST CARBON I OPEN SYSTEM where
0; remains in th
cyc e ‘_;-"‘ =) a::::l;:ﬂne. ‘

in the ATMOSPHERE

Wood products can store
carbon and can substitute for
emission-intensive products
such as concrete

Growing forests

remove carbon
from the

atmosphere.

VAR W

Fires & decomposition
following disturbance events
release carbon into the

& 3 atmosphere.
S WA

Bioenergy from
forest biomass can
substitute for fossil

fuel energy.

@Fo«m&aﬂm Office of Sustainabiity and Cimate  April 2019

Image: USDA US Forest Service



Carbon vs CO,

1 ton Carbon # 1 ton CO,

1 ton Carbon = (44/12=) 3.67 tons CO,



Carbon Storage Calculation

Douglas-Fir-Larch:
1 ft3 =34.51b (15% MC)
= 30.0 lb (dry)

50% Carbon by (dry) weight:
1 ft3 = 15 |Ib Carbon stored

1 Ib Carbon converts to 3.67 Ib CO,:
1 ft> =551b CO,



https://www.woodworks.org/resources/calculating-the-carbon-stored-in-wood-products/

WoodWorks Carbon Calculator

v Volume of wood used:

* Available at woodworks.org 208,320 cubic feet

; U.S. and Canadian forests grow this much wood in:
17 minutes

« Estimates total wood mass in a building

+ Relays estimated carbon impacts: C| oneeintsicod

° i Avoided greenhouse gas emissions:
Amount of carbon stored in wood | 68| §%) mete oot co.

° TOTAL POTENTIAL CARBON BENEFIT:
Amount of gree_nhouse gas . V 13,958 metric tons of CO,
emissions avoided by choosing T
wood over a non-wood material EQUIVALENT TO:

L

a 2,666 cars off the road for a year

Source: US EPA

Energy to operate a home for 1,186 years
WOODWORKS ﬂ 9y P y

e A

http://www.woodworks.org/carbon-calculator-download-form/



http://www.woodworks.org/carbon-calculator-download-form/

Life Cycle Assessment (LCA)
“Evaluation of the inputs, outputs, and potential environmental
impacts of a product system throughout its life cycle”

» Systematic, scientific quantification

Used for:

» Single products or processes: e.g., a wood product

» Complex, integrated systems: e.g., an entire building (WBLCA)

Source: 1ISO 21930:2017(E), 3.3.2


https://www.woodworks.org/resources/introduction-to-whole-building-life-cycle-assessment-the-basics/

Life Cycle Assessment (LCA)

“Evaluation of the inputs, outputs, and potential environmental
impacts of a product system throughout its life cycle”

Environmental Impacts: /

» Global Warming Potential (GWP)

» Ozone depletion

» Smog formation

» Acidification

» Eutrophication

» Depletion of nonrenewable resources
» Etc.

Source: 1ISO 21930:2017(E), 3.3.2



GHG
Emissions

Time

Life Cycle of a Building
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Image: Think Wood



Construction works assessment information
Optional supplementary
Construction works life cycle information within the system boundary information beyond the
system boundary
—-
Al-A3 A4 -A5 B1 - B7 C1-C4
D
PRODUCTION CONSTRUCTION END-OF-LIFE
Stage USE Stage
Stage Stage
(Mandatory)
Al A2 A3 A4 AS5 B1 B2 B3 B4 BS5 C1 C2 C3 C4
= - .
» <) > = o
= =% g = = &
: g5 _|| £8 || €3 E3 g ||
> & ST % s U ST || s8R 2 2 &
@ s3a|l 23 g 2 S @ 8 2P 8 . :
g & £ =4 & = cSE| £8_ 2 8_‘§ S 8_'§ § S = 2 Potential net benefits
5 S & = e s Az gEZ|| SE5 | oS 2 . 53 g z from reuse, recycling
.g g £ g £ k: g S E - 3% 2 < i ég E. z 28 e ° and/or energy recovery
s 8 S - = g - Ssll 2838 || ES5| 88§ E S 5 b beyond the system
.ga 2 & = £ SEZ|| S8 §§§ g:—;& = 2™ 2 § boundary
s | E |l * - 25¢|| 85 || E25| 228 2 ||z s || 8
g = Bl T ESsc || 8gF S =
- i A L b e 3 )
(5 = b s © =N s+ @ I~
] o L e o
= S < K £
o [
Scenario Scenario Scenario  Scenario Scenario Scenario  Scenario Scenario Scenario  Scenario Scenario Scenario
B6 Operational energy use
Scenario
B7 Operational water use
Scenario

* Replacement information module (B4) not applicable at the product level. Source: 1SO 21930:2017(E), Figure 2



What makes wood different?
Biogenic Carbon




Biogenic Carbon

{

‘Carbon derived from... material of biological origin
excluding material embedded in geological formations or

transformed to fossilized material and excluding peat.”

Photosynthesis:
6 COZ + 6 H20 — C6H1206 (Stored)+6 02 (released)

Source: ISO 21930:2017(E), 3.7



Biogenic Carbon

“Bio-based materials originating from renewable resources
(such as wood...) contain biogenic carbon.”

» Biogenic carbon removals and emissions shall be reported as CO, in the LCI
» When entering the product system (removal), characterized with a factor of -1
» When converted to emissions (emission), characterized with a factor of +1

» When leaving the product system (export), characterized with a factor of +1

Source: I1ISO 21930:2017(E), 7.2.7



https://www.woodworks.org/resources/when-to-include-biogenic-carbon-in-an-lca/

Biogenic Carbon Accounting

+1 out

Note that “exports” are
not direct emissions to
the atmosphere.

Removal of Emission or export
carbon from the of carbon from
atmosphere product system



Biogenic Carbon

“For wood, biogenic carbon may be characterized with a -1...
when entering the product system only when the wood
originates from sustainably managed forests.”

So...
What is a sustainably managed forest?



Sustainably Managed Forests
“... zero emissions associated with land use change”

Option 1:

Includes wood products responsibly sourced and certified to:
Standards globally endorsed by PEFC and FSC
FSC, SFI, CSA, ATFS, etc.

Option 2: (NOTE 2)

“The concept of sustainably managed forests is linked but not limited to respective
certification schemes”

Evidence such as national reporting under UNFCCC to identify forests with stable or
increasing forest carbon stocks



Should | include biogenic
carbon?

Yes! But how?
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https://www.woodworks.org/resources/how-to-include-biogenic-carbon-in-an-lca/
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BIOGENIC CARBON FLOWS
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BIOGENIC CARBON FLOWS

(+)

START OF PRODUCT

END OF PRODUCT

) SYSTEM BOUNDARY R : 8 fhoi SYSTEM BOUNDARY
— euse, recycle, incineration;
S (Where human intervention all result in net zero biogenic
g first occurs) carbon flows
g Life Cycle Information Module:
= A1 A2 A3 A4-A5 B1-B7 C1-C2  C3-C4 TIME (Not to scale)
NET ZERO / y i Reuse, recycle, or incineration with energy
BIOGENIC CARBON pa f carbon stored in the wood recovery; stored biogenic carbon leaves the
o for the life of the building ) product system for use in next system product
! /|19
O B wood residuss Decomposition R Permanent biogenic
(_) incinerated for cnesay in landfill carbon storage in landfill
Natural E <
environment o Carbon remains d Co-products (wood chips,
outside product o stored in logs shavings, sawdust) leave
— the product system .
system boundary o P e No cha nge in
T
> biogenic carbon

| ‘B Slash left
' in forest

Biogenic carbon
sequestered by
growing trees

@ Whole trees harvested;
stored carbon enters the
product system

)



End-of-Life Fates for Wood Products

1. Landfill

2. Incineration (for energy recovery)
3. Recycle
4

. Direct Reuse



End-of-Life Fates for Wood Products

1.

—_—

2. Incineration (for energy recovery)
All biogenic carbon leaves

the product system as an
4. Direct Reuse export / emission (+1).

3. Recycle -




BIOGENIC CARBON FLOWS In all three cases, net biogenic

carbon flows are zero.
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End-of-Life Fates for Wood Products

1. Landfill
2.
3.

\

(Landfill operations
 Most does not decay
* Decay releases landfill gases
 Emitted directly to atmosphere, or
e Landfill gas capture for energy recovery

_Does not include benefits of using recovered energy )

Most biogenic carbon is

permanently stored

in the landfill.

The rest is released through decay
as an emission (+1).



BIOGENIC CARBON FLOWS

(+)

START OF PRODUCT

END OF PRODUCT
SYSTEM BOUNDARY

Reuse, recycle, incineration;
all result in net zero biogenic

TIME (Not to scale)

C3-C4

-

i Reuse, recycle, or incineration with energy
recovery, stored biogenic carbon leaves the
product system for use in next system product

Decomposition
in landfill

h Permanent biogenic
carbon storage in landfill

A portion of the carbon leaves

] SYSTEM BOUNDARY
% (Where human intervention
g first occurs) carbon flows
g Life Cycle Information Module:
o A1 A2 A3 A4-A5 B1-B7 C1-C2
NET ZERO / z f Carbon stored in the wood
BIOGENIC CARBON o) for the life of the building
o
: f
S
€ Woeod residues
2 incinerated for energy
Natural E c
environment o Carbon remains o Co-products (wood chips,
outside product o stored in logs shavings, sawdust) leave
system boundary E the product system

T

| ‘B stash et
l in forest

Biogenic carbon
sequestered by
growing trees

Whole trees harvested;
stored carbon enters the
product system

the product system through

decomposition in the landfill
Counted as (+) emission
(but still carbon neutral)
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A Note About Tools:

In addition to differences in end-of-life scenarios:

» Where end-of-life effects are reported (C3-C4 vs Module D)
» Methodology (ISO compliance)

» LCl Databases (background data)

» User interface, workflow



https://www.woodworks.org/resources/biogenic-carbon-accounting-in-wblca-tools/

A WoodWorks Resources

WOODWORKS

Whole Building Life Cycle Assessment (WBLCA)

» Introduction to Whole Building Life Cycle Assessment: The Basics
» Worksheet for Structural WBLCA of Mass Timber Buildings

» WBLCAs of Built Projects

Expert articles on topics such as:

» Biogenic Carbon in LCA Tools

» Long-Term Biogenic Carbon Storage

» What Net Zero Means in Building Construction

» Environmental Product Declarations (EPDs)

Scan for a complete list of sustainability
resources at woodworks.org

ithGroup, photo Chad Davies



PROJECT DETAILS

LOCATION:

Denver, Colorado

SIZE:

Five stories; 150,418 square feet

Platte Fifteen

Denver's First CLT

STRUCTURAL SYSTEM GWP AND WHOLE BUILDING COST (%)

400%

S W W

GwpP
COST
COST
COSsT

MASS TIMBER STEEL CONCRETE

Source: Platte Fifteen Life Cycle Assessment https://www.woodworks.org/resources/platte-fifteen-life-cycle-assessment/

Rendering: Hickok Cole Architect


https://www.woodworks.org/resources/platte-fifteen-life-cycle-assessment/
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