Structural Design: Member Sizing, Optimized Grids, Connections and Lateral Load Resistance

March 26, 2024

Presented by Anthony Harvey and Kate Carrigg

Adidas East Village Expansion / LEVER Architecture / photo Jeremy Bittermann

WOODWORKS

WPC

JI-mmm-

Early Design Decisions: Priming Mass Timber Projects for Success

Presented by: Anthony Harvey, PE Regional Director OH, IN, KY, MI WOODWORKS

COUNCIL

HOOD PRODUCTS

Grids & Spans

- Consider Efficient
 Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation

Grids & Spans

- Consider Efficient
 Layouts
- Repetition & Scale
- Manufacturer Panel Sizing
- Transportation

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Albina Yard, Portland, OR 20x20 Grid, 1 purlin per bay 3-ply CLT Image: Lever Architecture

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

0 HR FRR: Consider 3-ply Panel

- Efficient Spans of 10-12 ft
- Grids of 20x20 (1 purlin) to 30x30 (2 purlins) may be efficient

Platte Fifteen, Denver, CO 30x30 Grid, 2 purlins per bay 3-ply CLT Image: JC Buck

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

First Tech Credit Union, Hillsboro, OR 12x32 Grid, One-Way Beams 5-ply (5.5") CLT Image: Swinerton

Member Sizes

- Impact of FRR on Sizing
- Impact of Sizing on Efficient Spans
- Consider connections can drive member sizing

1 or 2 HR FRR: Likely 5-ply Panel

- Efficient spans of 14-17 ft
- Grids of 15x30 (no purlins) to 30x30 (1 purlin) may be efficient

Clay Creative, Portland, OR 30x30 Grid, 1 purlin per bay 2x6 NLT Image: Mackenzie

Construction Type Early Decision Example

7-story building on health campus

- Group B occupancy, NFPA 13 sprinklers throughout
- Floor plate = 22,300 SF
- Total Building Area = 156,100 SF

MT Construction Type Options:

- If Building is < 85 ft
 - 7 stories of IV-C
 - 6 stories of IIIA or IV-HT over 1 story IA podium
- If Building is > 85 ft
 - 7 stories of IV-B

Construction Type Early Decision Example

MT Construction Type Options:

- If Building is < 85 ft
 - 7 stories of IV-C
 - 6 stories of IIIA or IV-HT over 1 story IA
- If Building is > 85 ft
 - 7 stories of IV-B

Implications of construction type choice in this example:

- FRR (2 hr vs 1 hr vs min sizes)
- Efficient spans & grid
- Exposed timber limitations
- Concealed spaces
- Cost
- And more...

Construction Type Early Decision Example

MT Construction Type Options:

- If Building is < 85 ft
 - 7 stories of IV-C
 - 6 stories of IIIA or IV-HT over 1 story IA
- If Building is > 85 ft
 - 7 stories of IV-B

Implications of Type IV-C:

- 2 hr FRR, all exposed floor panels, beams, columns
- Likely will need at least 5-ply CLT / 2x6 NLT/DLT
- Efficient spans in the 14-17 ft range
- Efficient grids of that or multiples of that (i.e. 30x25, etc)
- No podium required

Construction Type Early Decision Example

MT Construction Type Options:

- If Building is < 85 ft
 - 7 stories of IV-C
 - <u>6 stories of IIIA or IV-HT over 1 story IA</u>
- If Building is > 85 ft
 - 7 stories of IV-B

Implications of Type IIIA or IV-HT:

- 1 hr FRR or min. sizes
- Potential to use 3-ply or thin 5-ply CLT
- Efficient spans in the 10-12 ft range
- Efficient grids of that or multiples of that (i.e. 20x25, etc)
- 1 story Type IA podium required

Construction Type Early Decision Example

MT Construction Type Options:

- If Building is < 85 ft
 - 7 stories of IV-C
 - 6 stories of IIIA or IV-HT over 1 story IA
- If Building is > 85 ft
 - 7 stories of IV-B

Implications of Type IV-B:

- 2 hr FRR, mostly protected floor panels, beams, columns
- Exposed areas: likely 5-ply / 2x6 NLT/DLT
- Protected areas: potential for thinner panels
- Choose 1 system throughout or multiple systems?
- Does grid vary or consistent throughout?
- No podium required

Why so much focus on panel thickness?

Typical MT Package Costs

Source: Swinerton

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 1 1-hr FRR Purlin: 5.5"x28.5" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 118 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.73 CF / SF

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IIIA option 2 1-hr FRR Purlin: 5.5"x24" Girder: 8.75"x33" Column: 10.5"x10.75" Floor panel: 5-ply

Glulam volume = 123 CF (22% of MT) CLT volume = 430 CF (78% of MT) Total volume = 0.74 CF / SF

Cost considerations: One additional beam (one additional erection pick), 2 more connections

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IV-HT 0-hr FRR (min sizes per IBC) Purlin: 5.5"x24" (IBC min = 5"x10.5") Girder: 8.75"x33" (IBC min = 5"x10.5") Column: 10.5"x10.75" (IBC min = 6.75"x8.25") Floor panel: 3-ply (IBC min = 4" CLT)

Glulam volume = 120 CF (32% of MT) CLT volume = 258 CF (68% of MT) Total volume = 0.51 CF / SF

Panel volume usually 65-80% of MT package volume

Type IV-HT 0-hr FRR (min sizes per IBC) Purlin: 5.5"x24" (IBC min = 5"x10.5")

Note that if size of building had permitted Type IIIB, member sizing would essentially be the same as IV-HT. But there are ^{25"}) other nuances between III and IV, we'll cover that later...

Glulam volume = 120 CF (32% of MT) CLT volume = 258 CF (68% of MT) Total volume = 0.51 CF / SF

Source: Fast + Epp, Timber Bay Design Tool

Panel volume usually 65-80% of MT package volume

Source: Fast + Epp, Timber Bay Design Tool

Type IV-C 2-hr FRR Purlin: 8.75"x28.5" Girder: 10.75"x33" Column: 13.5"x21.5" Floor panel: 5-ply

Glulam volume = 183 CF (30% of MT) CLT volume = 430 CF (70% of MT) Total volume = 0.82 CF / SF

Which is the most efficient option?

Source: Fast + Epp, Timber Bay Design Tool

	Timber Volume Ratio	Podium on 1 st Floor?
IIIA – Option 1	0.73 CF / SF	Yes
IIIA – Option 2	0.74 CF / SF	Yes
IV-HT	0.51 CF / SF	Yes
IV-C	0.82 CF / SF	No

A general rule of thumb for efficient mass timber fiber volume is no higher than 0.75 CF per SF. Ratios in the 0.85 to 1.0 CF / SF range tend to become cost prohibitive

Which is the most efficient option?

Source: Fast + Epp, Timber Bay Design Tool

NEW MASS TIMBER FLOOR VIBRATION DESIGN GUIDE

U.S. Mass Timber Floor Vibration

Design Guide

Worked office, lab and residential Examples

Covers simple and complex methods for bearing wall and frame supported floor systems

Connections

A STATE AND A STAT

Credit: Structurlam

Many ways to demonstrate connection fire protection: calculations, prescriptive NC, test results, others as approved by AHJ

Steel hangers/hardware fully concealed within a timber-to-timber connection is a common method of fire protection

Connection FRR and beam reactions could impact required beam/column sizes

Photos: Simpson Strong-Tie

2017 Glulam Beam to Column Connection Fire Tests under standard ASTM E119 timetemperature exposure

Fire Test Results

Test	Beam	Connector	Applied Load	FRR
1	8.75" x 18" (222mm x 457mm)	1 x Ricon S VS 290x80	3,905lbs (17.4kN)	1hr
2	10.75" x 24" (273mm x 610mm)	Staggered double Ricon S VS 200x80	16,620lbs (73.9kN)	1.5hrs
3	10.75" x 24" (273mm x 610mm)	1 x Megant 430	16,620lbs (73.9kN)	1.5hrs

Softwood Lumber Board Glulam Connection Fire Test Summary Report

Issue | June 5, 2017

Full Report Available at:

https://www.thinkwood.com/wp-content/uploads/2018/01/reThink-Wood-Arup-

SLB-Connection-Fire-Testing-Summary-web.pdf

Southwest Research Institute

6220 CULEBRA RCAD 78238-5166 + PO DRAWER 28510 78228 0510 + SAN ANTONIO, TEXAS, USA + (210) 884-5111 + WWW SWRI ORG

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION

FIRE TECHNOLOGY DEPARTMENT WWW.FIRE.SWRI.ORG FAX (210) 522-3377

FIRE PERFORMANCE EVALUATION OF A LOAD BEARING GLULAM BEAM TO COLUMN CONNECTION, INCLUDING A CLT PANEL, TESTED IN GENERAL ACCORDANCE WITH ASTM E119-16a, STANDARD TEST METHODS FOR FIRE TESTS OF BUILDING CONSTRUCTION AND MATERIALS

FINAL REPORT Consisting of 32 Pages

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Member to member bearing also commonly used, can avoid some/all steel hardware at connection

Style of connection also impacts and is impacted by grid layout and MEP integration

SWINERTON MASS TIMBER

ARCHITECTURE URBAN DESIGN INTERIOR DESIGN

WoodWorks Index of Mass Timber Connections

MASS TIMBER CONNECTIONS INDEX

A library of commonly used mass timber connections with designer notes and information on fire resistance, relative cost and load-

acity.

Connections

Other connection design considerations:

- Structural capacity
- Shrinkage
- Constructability
- Aesthetics
- Cost

Lateral Systems

Prescriptive Code Compliance:

- ☑ Light Frame Wood Shear Walls (65 ft max)
- Concrete Shear Walls
- ✓ Steel Braced Frames
- CLT Shear Walls (65 ft max) Per 2021 SDPWS/ASCE 7-22
- CLT Rocking Walls Currently in development!

Mass Timber Post Tension Rocking Shear Wall Tests

Source: S. PEI et al. http://nheritallwood.mines.edu/

CLT Shear Wall and Diaphragm Design

with SDPWS 2021

Presented by:

Kate Carrigg, PE Regional Director (OR, ID-So, HI)

Cross-Laminated Timber (CLT) SCL laminations

Cross-Laminated Timber (CLT) Solid sawn laminations

CLT in the U.S. Building Code – IBC 2018

General improvements

PRG 320 Defined Layups

Gra asic		.2				L /	ayup)						Pane	el Prope	erties	
	SD RE	FEREN				1	BASIC				UPS (FOR Najor Streng				Ainor Stren	gth Direction	1
	CLT Grade	t _p (in.)	=	T	=	Ĺ	=	L	=	(F _b S) _{eff,f,0} (lbf-ft/ ft of width)	(EI) _{eff,f,0} (10 ^e lbf- in.²/ft of width)	(GA) _{eff,f,0} (10 ^e lbf/ ft of width)	V₅₀ (lbf/ft of width)	(F _b S) _{eff,f,90} (Ibf-ft/ft of width)	(EI) _{eff,f,90} (10 ⁶ lbf- in.²/ft of width)	(GA) _{eff,f,90} (10 ⁶ lbf/ft of width)	V, 90 (Ibf/ft o width)
		4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	1,490	160	3.1	0.61	495
	E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	2,480	1,370	81	1.2	1,490
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,475	3,150	313	1.8	2,480
-		4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	1,980	165	3.6	0.56	660
	E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	3,300	1,440	95	1.1	1,980
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	4,625	3,300	364	1.7	3,300
- T		4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	1,160	110	2.3	0.44	385
	E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	1,930	955	61	0.87	1,160
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,700	2,210	234	1.3	1,930
		4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.50	1,820	140	3.4	0.62	605
	E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	1.0	3,025	1,230	88	1.2	1,820
		9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,400	1,089	1.5	4,225	2,850	338	1.9	3,025
		4 1/8	1 3/8	1 3/8	1 3/8					3,825	101	0.46	1,650	160	3.1	0.55	550
	55	1 7/0	1 0/0	1 0/0	1 0/0	1 0/0	1 0 /0			0 000	200	0.00	0.750	1 270	01	1 1	1 / 50

FLATWISE Panel Loading

Span in MAJOR Strength Direction "Parallel" Direction Use subscript '0' in Notation Span in MINOR Strength Direction "Perpendicular" Direction Use subscript '90' in Notation

Reference & Source: ANSI/APA PRG 320

EDGEWISE Panel Loading

Span in MAJOR Strength Direction

Span in MINOR Strength Direction

Reference & Source: ANSI/APA PRG 320

3rd Party Product Qualification of CLT

		LC	Revised August 15, 2017	
ima 86 Colu	artLam, LLC 3 13th Street We- ambia Falls, MT	Cross-Laminated Tim	ber	
	i) 862-0098 v.smartiam.com		DRODUCT DE	DODT
1.	 2015 Intern 		PRODUCT RE	
	 Laminated 2012 and 20 	Nordic X-La	m	PR-L306
	 2015 Intern Cross-Lami 	Nordic Stru		Revised March 26, 2016
	 2012 and 2 	Products: Nordic X	l am	
	 ANSI/APA F 	Nordic Structures	Lam	
	APA Report	1100 Avenue des C	anadiens-de-Montréal, Suite 504	
•	 APA Report 	Montreal, Québe		
2	Product descri	(514) 871-8526		
	SmartLam cros	www.nordic.ca	Report prepared for: Spec Direct (Free User) on 9/11/2017 10:50:16 AM	SpecDirect House In Discus
	or Hem-fir lum	1. Basis of the		
	product qualific Allowable desi	 2015 Inte 		
	Table 1. Smar	Laminate	Conservation of the Second Sec	
	manufactured i	 2012 and 	Inter	tek
	and lengths up	 2015 Inte 		
		Cross-La		
3.	Design propert SmartLam CL1	 2012 and 	LISTING INFORMATION OF KLH Massivholz Gr	nbH - Massivholzplatten (solid wood slabs)
	Note that the u	ANSI/AP Timber	CLT	
	applications an	 FPInnovi 	SPEC ID: 3	8204
	installed on the	14054R.	SPEGID: 3	0204
2 e d	such as load d			
	2015 National	2. Product des		
	engineer of red diaphragms, de	Nordic X-La	KLH Massivho	- O-bu
	be consulted w	accordance	KLH Massivno Katsch an der	
		qualification X-Lam pane	Ratson an oer	Mui 202
1	Linnant uisroid	plank billet	Teufenbach-Kats	ch, A-8842
	SmartLam CL1	lengths up ti	Austria	1
	manufacturer (
	of record. Pen	3. Design prop		
į.	Fire-rated asse	Nordic X-La		
	Procedures sp	Tables 1 an		
	SmartLam CL1	(www.nordic such as load		
		the recomm		
		(www.rethin		

CLT in In-Plane (Edgewise) Strength

TABLE 3-REFERENCE DESIGN VALUES FOR IN-PLANE SHEAR OF THE STRUCTURLAM CROSSLAM® CLT PANELS¹

CLT	CLT PANEL THICKNESS	and the second of the second	N ORIENTATION ² si)	FACE LAMINATION ORIENTATION ³ (lbf/ft of width)		
LAYUP	DESIGNATION	п ⁴	Т,	11 ⁴	<u>т</u> 4	
	99 V	175 ⁸	235 ⁸	8,200 ⁸	11,000 ⁸	
1014	169 V	175 ⁸	235 ⁸	14,000 ⁸	18,800 ⁸	
V2M1	239 V	175 ⁸	235 ⁸	19,800 ⁸	26,600 ⁸	
	309 V	175 ⁸	235 ⁸	25,600 ⁸	34,300 ⁸	
	105V	195	290	9,700	14,400	
VOLU I	175V	270	290 ⁶	22,400	24,000 ⁶	
V2M1.1	245V	270 ⁵	290 ⁶	31,3005	33,600 ⁶	
	315V	270 ⁵	290 ⁶	40,2005	43,200 ⁶	
		4 100.00				

Source: ICC-ES/APA Joint Evaluation Report ESR 3631

145 to 290 PSI Edgewise Shear Capacity = 1.7 to 3.5 kips/ft (ASD) per inch of thickness!

Consult with the Manufacturers for Values

Multiply by Cd = 1.6for short term ASD strength Reference Design Values for Nordic X-Lam Listed in Table 1 (For Use in

11,000 ⁸		Major Streng	th Direction	Minor Strength Direction		
18,800 ⁸ 26,600 ⁸		F _{v,e,0} ^(a) (psi)	G _{e,0} t _p ^(d) (10 ⁶ lbf/ft)	F _{v.e,90} ^(a) (psi)	G _{e.90} t _p ^(d) (10 ⁶ lbf/ft)	
34,3008		155 ^(b)	1.36	190 ^(b)	1.36	
14,400		155	1.52	190 ^(b)	1.52	
24,000 ⁶ 33,600 ⁶		155	1.79	190	1.79	
43,200		185 ^(c)	2.23	215 ^(c)	2.23	
140-4s	5 1/2	145	2.39	190 ^(b)	2.39	
143-5s	5 5/8	185 ^(c)	2.44	215 ^(c)	2.44	
175-5s	6 7/8	185	2.99	215	2.99	
197-7s	7 3/4	155 ^(b)	3.37	215 ^(c)	3.37	
213-71	8 3/8	185 ^(c)	3.64	215 ^(c)	3.64	
220-7s	8 5/8	185 ^(c)	3.75	215 ^(c)	3.75	
244-7s	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18	
244-71	9 5/8	185 ^(c)	4.18	215 ^(c)	4.18	
267-91	10 1/2	155 ^(b)	4.56	215 ^(c)	4.56	
314-91	12 3/8	185 ^(c)	5.38	215 ^(c)	5.38	

Source: APA Product Report PR-L306

E1

CLT <u>Panels</u> can have > 9 kips / ft in-plane shear capacity

CLT in the U.S. Building Code – Lateral in IBC 2021

New Requirements for CLT Lateral Systems! (but R values for CLT Shear Walls are not in ASCE 7-16)

CLT in the U.S. Building Code – Lateral in the IBC 2024?

Future Full Recognition of CLT Lateral Systems

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 SDPWS – Unified Nominal Shear Capacity

For sheathed wood frame shear walls and diaphragms, SDPWS 2015 has two nominal shear capacities

 $v_{
m s}$ Nominal shear capacity for <u>seismic</u> loads $v_{
m w}$ Nominal shear capacity for <u>wind</u> loads

SDPWS 2021 has one nominal shear capacity for both wind and seismic (for all systems such as WSP and CLT)

 $v_{
m n}$ Nominal shear capacity

2021 SDPWS – Unified Nominal Shear Capacity

To calculate the ASD or LRFD shear capacity, SDPWS 2021 has <u>different reduction</u> factors for wind and seismic

	Design shear capacity			
	ASD	LRFD		
Wind	$v_{\rm n}$ /2.0	0.8 $v_{ m n}$		
Seismic	$v_{\rm n}$ /2.8	0.5 $v_{ m n}$		

SDPWS 2021 Section 4.1.4

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- <u>New CLT Shear Wall requirements</u>
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

(other) CLT Shear Walls

not meeting Appendix B

CLT Shear Walls

meeting SDPWS 2021 Appendix B

Platform Framed CLT Construction

Section View

Elevation View

SDPWS 2021 Section 4.1.4

Platform Framed CLT Construction

Section View

Elevation View

Section View

Section View

Elevation View

Panel to Panel Connections

Panel to Platform Connection

0.105" ASTM A653 Grade 33 Steel(8) 16d box nails to each wall panel3.5" long x 0.135"Ø shank with 0.344"Ø head

Same steel plate and nails plus 5/8" Ø bolts or lag screws to roof, floor or foundation

Panel to Platform Connection

Nominal shear capacity of connector:

 v_n = 2605 C_G [lbs] per angle connector

C_G adjusts for specific gravity, G of CLT

$$C_G = 1.0 for G ≥ 0.42= 0.86 for G = 0.35= 1.0 - 2 (0.42-G) for 0.42 > G > 0.35$$

Nominal unit shear capacity: $v_n = n (2605 / b_s) C_G [lbs/ft]$

What R-Values can I use?

R Values for CLT Shear Walls in SDPWS 2021

(other) CLT Shear Walls

not meeting Appendix B

CLT Shear Walls

meeting SDPWS 2021 Appendix B

R = **1.5** $C_d = 1.5 \Omega_o = 2.5$

In SDPWS 2021 4.6.3

University of Denver Burwell Center for Career Achievement Photo Credit: WoodWorks

State of Oregon Statewide Alternative

Statewide Alternate Method No. 15-01

Cross-laminated timber Seismic force-resisting systems

Statewide Alternate Methods are approved by the division administrator in consultation with the appropriate advisory board. The advisory board's review includes technical and scientific facts of the proposed alternate method. In addition:

- Building officials shall approve the use of any material, design or method of construction addressed in a statewide alternate method;
- · The decision to use a statewide alternate method is at the discretion of the applicant; and
- Statewide alternate methods do not limit the authority of the building official to consider other proposed alternate methods encompassing the same subject matter.

Code/edition/section:	2022 Oregon Structural Specialty Code (OSSC)—Section 1613 American Society of Civil Engineers (ASCE) 7-2016 or ASCE 7-2022
Date:	Issued—Jan. 15, 2015 Updated—Feb. 2, 2023
Subject:	Cross-laminated timber (CLT)-Seismic force-resisting system

Background:

Cross-laminated timber (CLT) is a wood product with both residential and nonresidential applications. CLT is defined and recognized as a viable construction material subject to specific construction requirements within Chapters 2, 5, 6, 7, 17 and 23 of the 2022 OSSC. Building Codes Division has prepared this statewide alternate method to recognize CLT shear walls as a seismic force-resisting system (SFRS) for the application of ASCE 7-16 or ASCE 7-22, *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*, Section 12.2, utilizing prescriptive design procedures.

Structures exceeding the prescriptive design procedures contained in this statewide alternate method will need to follow the performance-based procedures as outlined in OSSC Section 104.10 and ASCE 7-16 Section 1.3.1.3.

Discussion:

ASCE 7-16 is the standard referenced in OSSC Section 1613 for the development of seismic design loads and associated criteria for structures. ASCE 7-16 Chapter 12 establishes seismic design coefficients and factors for

2021 Special Design Provisions for Wind and Seismic

Top Changes Relevant to CLT Lateral Systems:

- New unified nominal shear capacity
- New CLT Shear Wall requirements
- New CLT Diaphragm requirements

View for free at awc.org

PowerPoint IS NOT the CODE!

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS adjustment factors except CD, Kε, φ, and λ; and Z shall be controlled by Mode IIIs or Mode IV fas-

- tener yielding in accordance with NDS 12.3.1.
- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode III, or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be designed using provisions in NDS 1.4.

Only 1 page of requirements for CLT Diaphragms

CLT Diaphragm Design Resource

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

Holmes Structures

Free at woodworks.org

24' x 24' CLT Diaphragm Test with Plywood Spline by AWC

2021 Special Design Provisions for Wind and Seismic

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_a, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, φ, and λ; and Z shall be controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1.

- Connections used to transfer diaphragm shear forces shall not be used to resist diaphragm tension forces.
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasceners are used in chord splice connections and the connection is controlled by Moze III, or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be dougned for 1.5 and 1.0 times the diaphrague forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diamragm chord elements and chord splice connctions using materials other than wood or steel shall be designed using provisions in NDS 1.4.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

1. The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as $4.5Z^*$, where Z* is Z multiplied by all applicable NDS adjustment factors except C_D, K_F, ϕ , and λ ; and Z shall be controlled by Mode IIIs or Mode IV fas-

tener yielding in accordance with NDS 12.3.1.

Requirements for the shear connections

CLT Diaphragm Shear Connections

- Diaphragm shear connections at CLT panel edges:
- Use dowel-type fasteners in shear (nails, screws, bolts)
- Yield Mode IIIs or Mode IV per NDS 12.3.1 controls capacity

Connection Yield Modes Per the NDS

CLT Diaphragm Shear Connection Design

Nominal capacity of CLT diaphragm shear connection fastener:

$$Z_n = 4.5 Z^*$$

Where Z^* is reference lateral capacity Z of NDS

multiplied by all applicable factors *except* C_D, K_F, ϕ , λ = 1.0

SDPWS 2021 Section 4.5.4(1) and NDS Table 11.3.1

Table 11.3.1 Applicability of Adjustment Factors for Connections

Also 1.0 for CLT Diaphragm Shear Connections

SDPWS 2021 Section 4.5.4(1) and NDS Table 11.3.1

2021 SDPWS – Unified Nominal Shear Capacity

2021

	Design shear capacity	
	ASD	LRFD
Wind	$v_{ m n}$ /2.0	0.8 $v_{ m n}$
Seismic	$v_{ m n}$ /2.8	0.5 $v_{ m n}$

SPECIAL DESIGN PROVISIONS

FOR WIND AND SEISMIC

ASD seismic design capacity: $4.5 \text{ Z}^* / 2.8 = 1.61 \text{ Z}^* \approx \text{C}_{\text{D}} \text{ Z} = 1.6 \text{ Z}$

Other Diaphragm Components

4.5 Cross-Laminated Timber (CLT) Diaphragms

4.5.1 Application Requirements

CLT diaphragms shall be permitted to be used to resist lateral forces provided the deflection in the plane of the diaphragm, as determined by calculations, tests, or analogies drawn therefrom, does not exceed the maximum permissible deflection limit of attached load distributing or resisting elements. Permissible deflection shall be that deflection that will permit the diaphragm and any attached elements to maintain their structural integrity and continue to support their prescribed loads as determined by the applicable building code or standard.

4.5.2 Deflection

CLT diaphragm deflection shall be determined using principles of engineering mechanics.

4.5.3 Unit Shear Capacity

CLT diaphragms shall be designed in accordance with principles of engineering mechanics using design values for wood members and connections in accordance with NDS provisions.

The nominal unit shear capacity, v_n, of CLT diaphragms shall be based on the nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces, as calculated per 4.5.4, Item 1. ASD allowable shear capacity or LRFD factored shear resistance for the CLT diaphragm and diaphragm shear connections shall be determined in accordance with 4.1.1.

4.5.4 Additional CLT Diaphragm Design Requirements

CLT diaphragms shall meet the following additional requirements:

 The nominal shear capacity for dowel-type fastener connections used to transfer diaphragm shear forces between CLT panels and between CLT panels and diaphragm boundary elements (chords and collectors) shall be taken as 4.5Z*, where Z* is Z multiplied by all applicable NDS

- tener yielding in accordance with NDS 12.3.1.
 Connections used to transfer diaphragm shear forces about not be used to resist diaphragm ten-
- Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

sion forces

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode III, or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Diaphragm chord elements and chord splice connections using materials other than wood or steel shall be lesigned using provisions in NDS 1.4. Wood elements, steel parts, and wood or steel chord splice connections shall be designed for 2.0 times the diaphragm forces associated with the shear forces induced from the design loads.

Exceptions:

- Wood elements and wood splice connections shall be permitted to be designed for 1.5 times the diaphragm forces associated with the shear forces induced by the wind design loads.
- 2. Where dowel-type fasteners are used in chord splice connections and the connection is controlled by Mode IIIs or Mode IV fastener yielding in accordance with NDS 12.3.1, fasteners in the connection shall be permitted to be designed for 1.5 and 1.0 times the diaphragm forces associated with the shear forces induced by the prescribed seismic and wind design loads, respectively.

Other CLT Diaphragm Components

Other CLT Diaphragm Components

Increased Diaphragm Design Forces ≤ Design Capacity

$$\gamma_D \cdot v \leq v'$$

v = wind or seismic force demand

$$v'$$
= Adjusted capacity
calculated per the NDS

2.0 for wood and steel components, except:

- 1.5 wood members resisting wind loads
 - 1.5 chord splice connections controlled by Mode IIIs or IV (seismic)
 1.0 chord splice connections controlled by Mode IIIs or IV (wind)

See SDPWS 2021 Section 4.5.4 for the full information

CLT Diaphragm Design Resource

CLT Diaphragm Design Guide

BASED ON SDPWS 2021

- Detailing for performance and constructability
- Combination SDPWS γ_D and ACSE 7 Ω_o and ρ
- Precalculated connection capacities
- Determination of diaphragm flexibility
- Calculation of diaphragm deflections

Free at woodworks.org

CLT Diaphragms

Is the Diaphragm Rigid or Flexible?

Questions? Ask us anything.

Mark Bartlett, PE Regional Director | Texas

(386) 871-8808

Jeff Peters PE, CGC Regional Director | FL, AL, LA

(214) 679-1874

mark.bartlett@woodworks.org

jeff.peters@woodworks.org

Anthony Harvey, PE Regional Director | OH, IN, KY, MI

(513) 222-3038

H, IN, KY, MI Regional Di

(303) 902-3151

anthony.harvey@woodworks.org kate.carrigg@woodworks.org

Kate Carrigg, PE Regional Director | OR, ID-South, HI