Fire Life Safety – Mass Timber Buildings

Disclaimer: This presentation was developed by a third party and is not funded by WoodWorks or the Softwood Lumber Board.

Robert Gerard, PE, Holmes Fire
December 2016
Fire Life Safety

• Agenda
 - Fire life safety
 - Performance based fire engineering
 - Tall timber case study
Fire Life Safety

- Performance requirements
 - Occupant safety
 - Fire fighter safety
 - Structural stability
Fire Life Safety

- Code compliance
 - Prescriptive design
 - Performance design
Fire Life Safety

- Prescriptive limits
 - 2015 International Building Code
 - Combustible vs. non-combustible
 - R-1 or R-2 Occupancy

Type IIIA, IV

Type IB

- Mass timber
- Mass timber (FRT)
- Concrete/Steel
Fire Life Safety

• Timber renaissance
 - Sustainability
 - Aesthetic
 - Structure
 - Cost
Fire Life Safety

• Case for Tall Wood, MGA
 - 30-story residential hybrid
• Timber Tower Research Project, SOM
 - 42-story office hybrid
• Timber Tower, Perkins + Will
 - 80-story timber tower
Performance Based Fire Engineering

• Compliance
 - Prescriptive design
 - Performance design

• Alternative means and methods
 - 2016 CBC 104.11
 - Quality
 - Strength
 - Effectiveness
 - Fire resistance
 - Durability
 - Safety
Performance Based Fire Engineering

- PBD methodology
 - ICC Performance Code
 - NFPA 5000
 - International Fire Engineering Guidelines (IFEG)

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Performance Based Fire Engineering

- Acceptance criteria
 - Society of Fire Protection Engineering (SFPE) Handbook
 - Fire Engineering Design Guide (FEDG)
 - NFPA
Performance Based Fire Engineering

- Risk identification
 - Performance requirements
 - Combustible vs. Non-combustible
Performance Based Fire Engineering

• Risk identification
 - Exposed timber
 - How does it contribute to fire?
 - Are there issues with delamination?
 - Does it self-extinguish?
Performance Based Fire Engineering

• Risk identification
 - Fire resistance
 - Listed assemblies
 - Penetrations

Acceptance Criteria
Risk Identification
Fire Strategy
Supplemental Justification
Performance Based Fire Engineering

- Risk identification
 - Structural robustness
 - Stability
 - Connections

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Performance Based Fire Engineering

• Fire protection strategies
 - Active protection
 - Enhanced sprinkler system
 - Enhanced detection
 - Smoke control

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Performance Based Fire Engineering

- Fire protection strategies
 - Passive protection
 - Enhanced fire resistance rating
 - Encapsulation
 - Non-combustible construction
Performance Based Fire Engineering

- Supplemental justification
 - Existing fire testing
 - Small-scale
 - Full-scale
 - Standard

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Performance Based Fire Engineering

- Supplemental justification
 - Structural fire engineering
 - Evacuation analysis
 - Smoke modelling

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Performance Based Fire Engineering

• Supplemental justification
 - Case study buildings
Performance Based Fire Engineering

• Design resources
Case Study

- Museum Tower
 - 20-story residential building
 - Mass timber construction
 - Two stairs
 - Two elevators
Case Study

• Performance based design
 - Design team agreement
 - Pre-agreement
 - Peer review
 - Methodology
Case Study

- Construction type
 - Alternative solution

<table>
<thead>
<tr>
<th>Code Provision</th>
<th>Type I-A</th>
<th>Type I-A Alternate</th>
<th>Type III-A</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories above grade (sprinklered)</td>
<td>UL</td>
<td>20</td>
<td>5 (6 w/ special provisions)</td>
<td>5</td>
</tr>
<tr>
<td>Height above grade (sprinklered)</td>
<td>UL</td>
<td>~200-ft</td>
<td>85-ft (75’ w/ special provisions)</td>
<td>85-ft</td>
</tr>
<tr>
<td>Building area (sprinklered)</td>
<td>UL</td>
<td>~240,000-ft²</td>
<td>72,000-ft² (w/out frontage)</td>
<td>61,500-ft² (w/out frontage)</td>
</tr>
<tr>
<td>Fire-Resistance Ratings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Structure</td>
<td>3-HR</td>
<td>3-HR (Heavy Timber)</td>
<td>1-HR (Any material)</td>
<td>Heavy Timber</td>
</tr>
<tr>
<td>(Non-combustible)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Study

- Acceptance criteria
 - Occupant safety
 - Firefighter safety
 - Property protection
Case Study

• Risk identification
 - Exposed timber
Case Study

• Risk identification
 - Combustibility
 - Structural stability
 - Compartmentation

Acceptance Criteria

Risk Identification

Fire Strategy

Supplemental Justification
Case Study

• Fire protection strategy
 - Active systems

<table>
<thead>
<tr>
<th>Element</th>
<th>Type I-A</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler system</td>
<td>LH</td>
<td>OH1</td>
</tr>
<tr>
<td>Detection</td>
<td>Spot-type</td>
<td>VESDA</td>
</tr>
<tr>
<td>Secondary water</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Fire command center</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Smoke control</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Emergency power</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Case Study

- Fire protection strategy
 - Passive systems

<table>
<thead>
<tr>
<th>Element</th>
<th>Type I-A</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary structure</td>
<td>3-hr Non-combustible</td>
<td>3-hr Combustible</td>
</tr>
<tr>
<td>Nonbearing wall (int)</td>
<td>1-hr</td>
<td>2-hr</td>
</tr>
<tr>
<td>Floor</td>
<td>2-hr Non-combustible</td>
<td>2-hr Combustible</td>
</tr>
<tr>
<td>Roof</td>
<td>1-1/2-hr Non-combustible</td>
<td>1-1/2-hr Combustible</td>
</tr>
<tr>
<td>Core</td>
<td>2-hr Non-combustible</td>
<td>2-hr Combustible</td>
</tr>
<tr>
<td>Finish rating</td>
<td>B/C</td>
<td>A/C</td>
</tr>
</tbody>
</table>

Risk Identification

Acceptance Criteria

Supplemental Justification

Fire Strategy

CLT

Non-combustible
Case Study

- Supplemental justification
 - Fire resistance
Case Study

- Supplemental justification
 - Fire testing
Case Study

- Supplemental justification
 - Structural fire engineering

Acceptance Criteria
Risk Identification
Fire Strategy
Supplemental Justification
Case Study

• Supplemental justification
 - Structural fire engineering
Case Study

• Supplemental justification
 - Additional testing
Case Study

- Supplemental justification
 - Precedent projects
Case Study

- Supplemental justification
 - Construction fire risk
Case Study

• Holistic performance based assessment
Timber Renaissance

• Emerging trends
Timber Renaissance

• Technical feasibility
Timber Renaissance

• Pushing the limits
Thank you!

- Which projects could be designed with mass timber?
- What are some challenges for tall timber?
- What are some opportunities for tall timber?

robert.gerard@holmesfire.com

December 2016